Advanced Usage

ELLA has been tested on high-resolution spatial transcriptomics datasets across various platforms and technologies. It comes with a set of default argument values that can be customized as needed. The usage of these customizable arguments is introduced in this page.

The full list of customizable arguments and their default choices and functions are listed in the table below

Args Type Default Function
dataset str ‘untitled’ Name of the dataset, help to distinguish multiple runs
beta_kernel_param_list list of lists 22 lists Shape parameters of the 22 beta kernel functions in NHPP model fitting
adam_learning_rate_max float 1e-2 Max initial learning rate of Adam
adam_learning_rate_min float 1e-3 Min initial learning rate of Adam
adam_learning_rate_adjust float 1e7 Adam LR = loglikelihood value under the null divided by 1e-7
adam_delta_loss_max float 1e-2 Max delta loss for Adam early stopping
adam_delta_loss_min float 1e-5 Min delta loss for Adam early stopping
adam_delta_loss_adjust float 1e8 Delta loss = loglikelihood value under the null divided by 1e-8
adam_niter_loss_unchange int 20 Adam stops if loss decrease < delta loss for 20 iterations
max_iter int 5e3 Max number of interations in Adam
min_iter int 1e2 Min bumber of interations in Adam
max_ntanbin int 25 Number of bins for computing relative positions
ri_clamp_min float 1e-2 Min relative position
ri_clamp_max float 1.0 Max relative position
hpp_solution str ‘numercial’ Use numercial solution for HPP
lam_filter float 0.0 Exclude significant genes with max(lam)-min(lam) <= 0.0

The default values can be costomized while instantiating the class, for example

ella_demo = EG_analysis(dataset='Demo', max_iter=3000)